Fractional powers of a difference operator

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domination number of graph fractional powers

For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...

متن کامل

A Comparison Result for the Fractional Difference Operator

In this paper, we deduce the Green’s function for a ν-th order, 1 < ν ≤ 2, discrete fractional boundary value problem with boundary conditions of the type αy(ν−2)−β∆y(ν−2) = 0, γy(ν+ b)+δ∆y(ν+ b) = 0, for α, β, γ, δ ≥ 0 and αγ+αδ+βγ 6= 0. This extends and generalizes the results of some recent papers. We then show that this Green’s function satisfies a positivity property. From this we deduce a...

متن کامل

A Probabilistic Representation of the Ground State Expectation of Fractional Powers of the Boson Number Operator

We give a formula in terms of a joint Gibbs measure on Brownian paths and the measure of a random-time Poisson process of the ground state expectations of fractional (in fact, any real) powers of the boson number operator in the Nelson model. We use this representation to obtain tight two-sided bounds. As applications, we discuss the polaron and translation invariant Nelson models.

متن کامل

On Some Fractional Systems of Difference Equations

This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.

متن کامل

A Binary Additive Equation Involving Fractional Powers

with integers m1, m2; henceforth, [θ] denotes the integral part of θ. Subsequently, the range for c in this result was extended by Gritsenko [3] and Konyagin [5]. In particular, the latter author showed that (1) has solutions in integers m1, m2 for 1 < c < 3 2 and n sufficiently large. The analogous problem with prime variables is considerably more difficult, possibly at least as difficult as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1997

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(96)00226-x