منابع مشابه
Domination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملA Comparison Result for the Fractional Difference Operator
In this paper, we deduce the Green’s function for a ν-th order, 1 < ν ≤ 2, discrete fractional boundary value problem with boundary conditions of the type αy(ν−2)−β∆y(ν−2) = 0, γy(ν+ b)+δ∆y(ν+ b) = 0, for α, β, γ, δ ≥ 0 and αγ+αδ+βγ 6= 0. This extends and generalizes the results of some recent papers. We then show that this Green’s function satisfies a positivity property. From this we deduce a...
متن کاملA Probabilistic Representation of the Ground State Expectation of Fractional Powers of the Boson Number Operator
We give a formula in terms of a joint Gibbs measure on Brownian paths and the measure of a random-time Poisson process of the ground state expectations of fractional (in fact, any real) powers of the boson number operator in the Nelson model. We use this representation to obtain tight two-sided bounds. As applications, we discuss the polaron and translation invariant Nelson models.
متن کاملOn Some Fractional Systems of Difference Equations
This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.
متن کاملA Binary Additive Equation Involving Fractional Powers
with integers m1, m2; henceforth, [θ] denotes the integral part of θ. Subsequently, the range for c in this result was extended by Gritsenko [3] and Konyagin [5]. In particular, the latter author showed that (1) has solutions in integers m1, m2 for 1 < c < 3 2 and n sufficiently large. The analogous problem with prime variables is considerably more difficult, possibly at least as difficult as t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1997
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(96)00226-x